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Abstract 
 
Stress and displacement fields for an unsteadily propagating crack under mode I and II loading are developed 

through an asymptotic analysis. Dynamic equilibrium equations for the unsteady state are developed and the solution to 
the displacement fields and the stress fields for a crack propagating with high crack tip acceleration, deceleration and 
rapidly varying stress intensity factor. The influence of transients on the higher order terms of the stress fields are 
explicitly revealed. Using these stress components, isochromatic fringes around the propagating crack are generated for 
different crack speeds, crack tip accelerations and the time rate of change of stress intensity factor, and the effects of the 
transients on these fringes are discussed. The effects of the transients on the dynamic stress intensity factor are 
discussed when a crack propagates with high acceleration and deceleration. The effect of transient on the time rate of 
change of dynamic stress intensity factor below Rayleigh wave speed in an infinite body is also studied. 
 
Keywords: Unsteady crack propagation, Dynamic stress intensity factor, Stress and displacement fields, Isochromatic fringes,  

Acceleration and deceleration crack, Time rate of change of dynamic stress intensity factor 
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

Dynamic fractures analysis can be classified into 
stationary and propagating crack problems. In case of 
dynamic stationary crack problem, the stress and 
displacement fields are time dependent. Thus, the 
stress intensity factors are vary with time. A dynamic 
propagating crack problem can be divided into steady 
and unsteady states. Generally, in the steady state, 
stresses and displacements depend, not on time, but 
crack propagation velocity. However, in the unsteady 
dynamic state, they are variable with time. Thus, 
dynamic stress intensity factor (DSIF) and crack 
propagation velocity in the unsteady state changes 
with time, and the transient phenomena occur mainly 

at the starting and stopping crack. 
The structure of dynamic stress and displacement 

fields for a stationary crack tip was studied by Thau 
and Lu (1971), Sih and Embley (1972), Chen (1978), 
Itou (1980) using a Laplace-Fourier variable method  
and their results indicate that the dynamic fields are 
the same as static ones, except for the stress intensity 
factor which is time dependent. 

The structure of dynamic stress and displacement 
fields for a propagating crack tip was studied by Yoffe 
(1951), Craggs (1960), Nishioka et al. (1983) and Lee 
et al. (1996) and their results indicate that the crack 
tip stress fields retain the inverse square root 
singularity and is dependent on the instantaneous 
value of the stress intensity factor and the crack 
propagation velocity. 

However, Dally and Shukla’s experiment (1979) 
shows that the crack tip fields are dependent on the 
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high crack tip acceleration and rapidly varying stress 
intensity factor in addition to instant stress intensity 
factor and crack propagation velocity. In all these 
studies, the crack propagates at constant velocity in 
steady state. Since the crack tip speed changes rapidly 
during crack initiation, the crack growth is likely to be 
transient, with the crack speed and dynamic stress 
intensity factors changing as a function of time. Using 
the two wave displacement potentials, Freund (1990) 
provided the partial differential equations and the 
solutions for two wave potentials in the dynamic 
equilibrium and a higher order asymptotic expansion 
for the first stress invariant and Guo et al. (2003) 
analyzed for sudden jumps in the crack tip velocity by 
numerical and experiment. Ing and wang (2004) 
investigated for transient response of a mode III crack 
propagating in a piezoelectric medium. In spite of 
these studies, the understanding of the individual 
stresses and displacements for a propagating transient 
crack is still limited. Rosakis, Liu and Freund (1991) 
obtained the higher order asymptotic individual stress 
components near the tip of a non-uniformly propa-
gating mode I crack. However, their solutions can’t 
have harmonic function because of being obtained 
from not transformed Laplace’s equation but general 
differential equation in the dynamic equilibrium. 
When we generate the contours for constant maxi-
mum shear stress (isochromatics) for mode I using 
their individual stress fields under high crack tip 
acceleration and rapidly varying stress intensity factor, 
the isochromatics can’t be symmetric about the x-axis 
on the basis of crack tip.  

To overcome this problem, the stress and displace-
ment fields for a transiently propagating crack are 
developed through a new method in this paper. The 
transient equilibrium equation is formulated in terms 
of displacement potentials and the solution is obtained 
through an asymptotic analysis. In analyzing this 
problem, it is very important that one transforms the 
general partial differential equation in the dynamic 
equilibrium into the Laplace’s equation whose solu-
tion has harmonic function. The method of this trans-
form is first proposed in this paper. From the 
solutions of the Laplace’s equations, the stress and 
displacement fields for a transient crack are obtained. 
Using the stress fields developed in this study, the 
contours for the isochromatics are generated and the 
effects of a transient crack on these contours are 
discussed. 

2. Stress and displacement fields for an 
unsteadily propagating crack 

2.1. Formation for equilibrium equations 

The relationship between stress and strain can be 
written as 
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where X and Y are `the reference coordinates,  

ijσ  the inplane stress components, µλ 211 +=C  

and λ=12C , and λ  and µ  denoting Lame’s 
constant and the shear modulus at X =0 respectively.  
If the deformation is plane strain, the displacements 
u  and v which are derived from dilatational and 
shear wave potentials Φ  and Ψ  can be expressed 
by Eq. (2) 
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The equilibrium in the transient dynamic state is 
given by Eq. (3) 
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Substituting Eq. (2) into Eq. (1), and substituting 
Eq. (1) into Eq. (3), the equations for the dynamic 
state can be obtained as          
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(4-b)  

 
The moving crack tip coordinates are 

)(taXx −= , Yy = . When Φ and Ψ have 
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function of position ),( yx , crack tip speed )(tc and 
time t at crack tip, the transformations for the 
transiently moving crack tip are given as     
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where tcc ∂∂= /  and )(ta is the half crack length 
in center crack or the crack length of an edge crack. If 
the crack propagates at a constant velocity in steady 
state, )/(/ 22222 xct ∂∂=∂∂ . From the relations in 
Eq. (5), Eq. (4) is transformed as  
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plane stress 
c , lc  and sc  are the crack propagation velocity, 

elastic dilatational wave velocity and elastic shear 
wave velocity at the crack tip. It is very difficult to 
obtain analytical solutions for the elastodynamic 
differential equation (6). Thus, an asymptotic 
expansion analysis of stress and displacement fields 
around the propagating crack is employed. To obtain 
an asymptotic expansion of the fields around the 
crack tip, we assume the general solutions of Eq. (6) 
for Φ  and Ψ as follows  
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power series as 
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Substituting Eq (8) into Eq. (7) and substituting Eq 
(7) into Eq. (6-a), the structure for complex constant 

nA  of Eq. (6-a) become as Eq.(9) 
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When 2,1=n , 2
ll im α= , and lm  is dependent 

on crack propagation velocity, physical properties  
and time. However, when 3≥n , lm  is dependent 

on the crack propagation, physical properties and 
acceleration, and the value is changed for each n . 
The structure for the complex constants nA and nB  

can be written as 
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where 0≤n  then nA and 0=nB .  

Thus, when Φ  and Ψ in Eq. (6) can be expanded 
by powers as Eq. (8), the structure of Eq. (6) can be 
expressed as Eq. (11) 
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where 0≤n , then 0=Ψ=Φ nn  
 

2.2. Stress and displacement fields for n = 1 , 2 

When 2,1=n , Eq. (11) is given as 
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Eqs (12-a) and (12-b) are the Laplace’s equation in 

complex domain ymxz slsl )()( +=  and the same as 

that for steady state and can be rewritten as 
0),()( ''22 =Φ+ tzm lnllα  and 0),()( ''22 =Ψ+ tzm snssα . 

Thus ll im α=  and ss im α= . Substituting the 
differentiation of nΦ  and nΨ in Eq. (7) into Eq. (2), 
the displacements u  and v  for n = 1 and 2 can 
be expressed as Eq. (13). 
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Substituting the differentiation of Eq. (13) into Eq. 

(1), the stress 
ijσ  for n = 1 and 2 can be expressed 

as Eq. (14). 
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Subsituting Eq. (7) into Eq. (14), applying traction 

free boundary conditions to the crack surface, nA  
and nB  can be obtained as 
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oK1  and *

1K  for 1=n  are the stress intensity 
factors  )(tK d

I  and )(tK d
II respectively. 

Thus, the stresses for a propagating crack can be 
obtained as Eq. (16). 
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The displacement for a propagating crack can be 
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obtained as Eq. (17). 
 

⎭
⎬
⎫

⎩
⎨
⎧ −= s

n

s
o
nsl

n

l
I

o
n

n
nrhnr

cBK
u θαθ

πµ
)

2
cos()

2
cos(2)(

22   

⎭
⎬
⎫

⎩
⎨
⎧ −+ s

n

snsl

n

l
IIn nrhnr

cBK θαθ
πµ

)
2

sin()
2

sin(2)(
2

*
2

*

 

⎭
⎬
⎫

⎩
⎨
⎧ +−= s

n

s
o
nl

n

ll
I

o
n

n
nrhnr

cBK
v θθα

πµ
)

2
sin()

2
sin(2)(

22

 

⎭
⎬
⎫

⎩
⎨
⎧ −+ s

n

snl

n

ll
IIn nrhnr

cBK θθα
πµ

)
2

cos()
2

cos(2)(
2

*
2

*
  

 (17) 
22 )( yxr jj α+= , )/(tan 1 xyjj αθ −= , slj ,=   

 

2.3. Stress and displacement fields for n =3 

From Eq. (10),  the lm  and sm  can be obtained 

as follows  
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For mode II state ; 
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)ˆ( jj im α=  in Eq. (18) is dependent on crack 

propagation velocity ( c ), acceleration ( c ), rate of 
change of the stress intensity factor ( K ), physical 
properties ( sl cc , ) and angle (θ ) at the crack tip. 

The limit of the accelerations can be obtained from 
Eq. (18) under Kj, d

IK , K , c , lc  and sc . The unit 
of 1k  and 2k  is the length (m). The value of the last 
term which is related to θ  in ),(ˆ sljj =α  is very 

small, compared to the other terms. Figure 1 show 
)(θjm / )(cm j

, in which  )(cm j
is the term 

excluding the last term related to θ  in 
jα̂ . As 

shown in Fig. 1, )(θjm / )(cm j
 approaches one. 

This indicates that the value of the last terms related 
to θ  is very small compared to one of the other 
terms. Thus, we can assume that 

jm  is independent 

of x and y , and it simplifies the problem. When 

lm  and sm  are the same as Eq. (18), Eq. (11) can 

expressed as Eq. (19) 
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Fig. 1. Variation in the rate of )(θlm  and )(θsm  with 
angle at crack tip for 1.01 >k . 
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where yixz jj α̂ˆ +=  and 

jα̂  is dependent on a 

transient factors in addition to physical properties  
and crack propagation velocity. Eq. (19) is also    
the Laplace’s equation in complex domain

jẑ      

and can be rewritten as 0),ˆ()ˆ( ''22 =Φ+ tzm lnllα   
and 0),ˆ()ˆ( ''22 =Ψ+ tzm snssα . Thus ll im α̂=  and 

ss im α̂= . When 3>n , Laplace’s equations for nΦ  
and nΨ  can be also obtained and the solutions of the 

Laplace’s equations have harmonic functions. Thus, 
),ˆ(3 tzlΦ  and ),ˆ(3 tzlΨ  can be written as 

 
∫−=Φ lll zdtztz ˆ),ˆ(Re),ˆ( 33 φ ,    

∫−=Ψ sss zdtztz ˆ),ˆ(Im),ˆ( 33 ψ   (20) 

 
where yixmxz jjj α̂ˆˆ +=+= ,  

22 )ˆ(ˆ yxr jj α+= , ]/ˆ[tanˆ 1 xyjj αθ −= ,  slj ,=   

 
The ),ˆ(3 tzlφ  and ),ˆ(3 tzsψ  are dependent on 

acceleration(dc/dt) and the rate of change of the stress 
intensity factor (dK/dt) in addition to the crack 
propagation velocity and physical properties. 
Substituting the differentiation of ),ˆ(3 tzlΦ  and 

),ˆ(3 tzsΨ  in Eq. (20) into Eq. (2), the displacements 

u  and v  for n = 3 can be expressed as Eq. (21). 
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{ }),ˆ(),ˆ(ˆIm tztzv snlnl ψφα +=   (21) 

 
Substituting the differentiation of Eq. (21) into Eq. 

(1), the stress 
ijσ  for n = 3 can be expressed as Eq. 

(22). 
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Substituting Eq. (23) into Eq. (22), the stress fields 

become  
 

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
−

−=
2

ˆ
cosˆˆ2)ˆ1(

1
1

2
3 2/122

2

2

33
l

lll
l

so
xx rA

θαα
α
αµσ   

⎪⎭

⎪
⎬
⎫

+
2

ˆ
cosˆˆ2 2/1

3
s

ss
o rB

θα  

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
−

+
2

ˆ
sinˆˆ2)ˆ1(

1
1

2
3 2/122

2

2
*
3

l
lll

l

s rA
θαα

α
αµ  

⎪⎭

⎪
⎬
⎫

+
2

ˆ
sinˆˆ2 2/1*

3
s

ss rB
θα  

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
−

−=
2

ˆ
cosˆ2)ˆ1(

1
1

2
3 2/12

2

2

33
l

ll
l

so
yy rA

θα
α
αµσ  

⎪⎭

⎪
⎬
⎫

+
2

ˆ
cosˆˆ2 2/1

3
s

ss
o rB

θα  

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−

−
−

−−
2

ˆ
sinˆ2)ˆ1(

1
1

2
3 2/12

2

2
*
3

l
ll

l

s rA
θα

α
αµ  

⎪⎭

⎪
⎬
⎫

+
2

ˆ
sinˆˆ2 2/1*

3
s

ss rB
θα  

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++=
2

ˆ
sinˆ)ˆ1(

2

ˆ
sinˆ)ˆ2(

2
3 2/12

3
2/1

33
s

ss
ol

ll
o

xy rBrA
θαθαµτ

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++
2

ˆ
cosˆ)ˆ1(

2

ˆ
cosˆ)ˆ2(

2
3 2/12*

3
2/1*

3
s

ss
l

ll rBrA
θαθαµ

 (24) 
 
Applying traction free boundary conditions on the 

crack surface, oA3 , oB3 , *
3A  and *

3B  can be obtained 

as 
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where  
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Substituting Eq. (25) into Eq. (24), applying 

113 / kAA oo =  and  2
*
1

*
3 / kAA = ,  the stress fields 

3ijσ  can be obtained as Eq. (26)  
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Table 1. Mechanical properties. 

Shear Modulus, µ  316.1=µ  (GPa) 
Material Fringe Constant, f  f = 15 (kN/m-fringe)

Poisson’s ratio, ν  ν =0.38 
Density, ρ  ρ =1200 (kg/m3) 
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Substituting Eq. (23) into Eq.(21), the displacement 

fields can be obtained as  
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Finally, the fields for a transient crack , 

ijσ  and 

ju  are given in Eq. (28) 

 

∑
=

=
3

1n
ijnij σσ , ∑

=

=
3

1n
jnj uu   (28) 

       
(a) 0=d

IK                     (b) 2/smMPa100=d
IK            (c) 2/smMPa300=d

IK  

Fig. 2. Isochromatic fringe patterns obtained for a stationary crack tip (M=0.02) under 0=c , mMPa0.1=d
IK  and 11 =k .
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The stress fields in Eq. (28) satisfy the traction free 
condition on the crack surface ( πθ ±= ). When the 
c  and K  are zero, the equations reduce to the 
fields for a steady state. It can be seen from the stress 
and displacement fields (equations 28) that the terms 
of n =1 and 2 are the same as those in the steady 
state and higher orders terms of ≥n 3 have terms of 
corresponding to the crack tip accelerations and the 
rate of change of stress intensity factor. Unlike the 
results reported by Freund (1990) and Rosakis et al. 
(1991), the higher order terms in this fields are not 
affected directly by the stress intensity factors and are 
not separated into two terms for stress intensity 
factors and non-stress intensity factors. This structure 
of these fields is general and universal. 

Generally, in order to obtain fracture parameters for 
a steady state crack from experimental data obtained 
through optical techniques such as photoelasticity or 
coherent gradient sensing (CGS) the use of the first 
few terms of the stress fields is sufficient. However, 
in the case of an unsteady crack, it is necessary to use 
at least three terms for the fields to explicitly account 
for the transient effects when extracting fracture 
parameters from experimental data.     
 

3. Discussion on solutions 

3.1 Contours of constant maximum shear stress 

In order to investigate the effects of the transient 
terms on a dynamic fracture, contours of constant 
maximum shear stress (isochromatics) are generated 
for the opening mode using the terms  1=n  and 3 
in Eq. (28). The material thickness ( h ) used in 
generating the contours is 9.5 mm and the value of 
the material properties are shown in table 1. 

Isochromatics at each point around crack tip are 
generated by the stress optic law (Eq. 29) combined  
with stress fields. 
 

h
Nf

xyyyxx
στσσ =+− 22 4)(   (29) 

 
where N  is the fringe order, h  the plate 

thickness and σf  the material fringe constant 

In experiments (Ravi-Chandar, 1993), the rate of 
increase in the dynamic stress intensity factor, d

IK , 

ranges from 1.0MPa m /s for quasi-static loading, 
resulting in a dynamic fracture to about  the order of 
105~108MPa m /s at crack initiation. Arakawa et al. 
(2000) showed that the rate of change of velocity at 
the initiation of a single edge crack could be of the 
order of 5×105 m/s2. Thus, the values of  d

IK  and 
c  are varied in this range for generating the contours 
and the remote stress in the x direction oxσ  was set 

to zero. 
Figure 2 shows the effect of the rate of change of 

mode I stress intensity factor d
IK  for a stationary 

crack tip (M=0.02) in  under 0=c  and 11 =k , 

where M is scc / . When 0,d
IK = the fringes are 

upright. As d
IK  increases, the fringes tilt forward 

around the crack tip, and the size and number of 
fringes increases. This variation occurs largely when 
the rate of change of the stress intensity factor is high. 

Figure 3 shows the effect of crack tip acceleration 
c  for a crack tip propagating with M=0.5 under 

0=d
IK  and 5.01 =k . When a crack velocity is low, 

a high rate of change of velocity in Eq. (18) can’t be 
applied. However, a selecting the small value of 

    
(a) 0=c                       (b) 25 m/s104×=c                  (c) 25 m/s108×=c  

Fig. 3. Isochromatic fringe patterns obtained for a crack tip propagating with M=0.5 under 0=d
IK , mMPa0.1=d

IK  and
5.01 =k . 
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)/( 311
oo AAk = , a higher c  can be applied in Eq. (18). 

It can be seen in Fig. 3 that the fringes tilt backward 
around the crack tip and their sizes increase with 
increasing crack tip acceleration. This variation also 
occurs largely at a high rate of change of velocity. 
Generally, isochromatic fringes for fast propagating 
cracks tilt more towards the crack face (backward) 
compared to those for a stationary crack. The 
phenomenon also occurs for a high crack tip 
acceleration c . 

Figure 4 shows the effect of crack tip acceler-  
ation c  for a crack tip propagating with M=0.5 
under, 25 /smMPa10=d

IK  and 5.01 =k . Under 
25 /smMPa10=d

IK , it can be also observed that  
the fringes also tilt backward around the crack tip and 
their sizes increase as the crack tip acceleration 
increases. Compared with Fig. 3 and 4, as d

IK  
increases as in Fig. 2, the fringes around the crack-tip 
tilt forward. 

The above results indicate that the isochromatic 
fringes of mode I using the stress fields obtained in 
this study are symmetric about x axis under very 
rapid transient state  and tilt backward around the 
crack tip with increasing crack tip acceleration c  
and tilt forward around the crack tip with increasing  
the rate of change of the dynamic mode I stress 
intensity factor d

IK . 
 

3.2 Comparison with fields obtained by Rosakis et al. 
(1991) 

Figure 5 shows the contours for constant maxi-
mum shear stress generated from fields obtained by  

Rosakis et al. (1991). Where, xxσ and 
yyσ among the 

three stress components can be written as follows. 
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(a) 0=c                   (b) 25 m/s105×=c                   (c) 26 m/s101×=c  

Fig. 4. Isochromatic fringe patterns obtained for a crack tip propagating with M=0.5 under 25 /smMPa10=d
IK ,

mMPa0.1=d
IK  and 5.01 =k . 
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As known in Fig. 5, the contours are not symmetric 

about the x axis except for the crack tip because  
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Fig. 5. The Isochromatic fringe patterns generated from fields 
obtained by Rosakis et al. (1991) ; (a) is the same condition 
as Fig. 2(b); (b) is the same condition as Fig. 3(c). 

their solutions can not have harmonic function. 
Actually, the fields very close to the crack tip don’t 
explain effectively the transient effects. Thus, the 
stress components are not effective for analyzing a 
transient crack by photoelasticity. Even if the fields 
have some problems with respect to photoelasticity, 
the contours of the isopachic fringes on the constant 
first stress invariant (

yyxx σσ + ) are the same as those 

in this study. 
 

3.3 Dynamic stress intensity factor during a crack 
acceleration and deceleration  

Figure 6(a) shows the ratio of dynamic to static 
stress intensity factor versus normalized crack speed 
when  a crack propagates with constant velocity or 
acc-eleration under the Rayleigh wave speed of 

sR cc 9235.0= in an infinite plate subjected to normal 

displacements on crack faces. The dynamic stress 
intensity factors can be obtained from assuming that 
the crack propagates with a constant y-displacement 
at a point on the crack surface away from the crack tip 
regardless of the crack speed, acceleration and 
deceleration. This crack propagation is quite possible 
in an infinite plate subjected to crack face pressure. 
Where s

IK  is a static stress intensity factor im-
mediately prior to the crack propagation. To obtain 
the stress intensity factor in y-displacement com-
ponent of Eq. (28), the following conditions     
were applied πθ = , m01.0=r  and 5.01 =k . As 
known in Fig. 6 (a), the stress intensity factors 
decrease with increasing a crack speed, and they 
become zero when the crack velocity approaches the 
Rayleigh wave speed. Specially, the stress intensity 
factors increase rapidly when the crack propagates 
with high acceleration at a low velocity. However, the 
stress intensity factors are not almost affected by high 
acceleration at a high crack speed. When the crack 
propagates with a constant velocity, the normalized 
stress intensity factors are almost the same as those of 
the two self-similar central crack tips extending at 
same speed by crack face pressure (Freund, 1990). In 
an experiment using a single edge cracked tensile 
plate reported by Arakawa et al. (2000), the dynamic 
stress intensity factors increase as a crack propagates 
with acceleration, and decrease as a crack propagates 
with deceleration. 

Figure 6 (b) shows the influence of the stress 
intensity factor on the rate of change of the mode I  
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(a) Variation of acceleration 
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(b) Variation of time rate of change of DSIF 

Fig. 6. The ratio of dynamic to static stress intensity factor 
versus normalized crack speed when a crack is propagating at 
a constant velocity or accelerating in an infinite plate under 
plane stress conditions and under the assumption that the 
crack propagates with a constant y-displacement at a point on 
the crack surface away from the crack tip. 

 
stress intensity factor d

IK  when the crack propagates 
with acceleration. Unlike 0=d

IK , the normalized 
stress intensity factors can be determined, provided 
that a critical displacement v value to propagate 
crack is known. It is assumed that the critical 
displacement m)01.0,( == rv πθ is 0.03 mm. The 

dynamic stress intensity factors change slightly when 
the displace-ment changes. As shown in Fig. 6 (b), the 
dynamic stress intensity factors decrease with 
increasing rate of change of stress intensity factor at a 
crack speed.  

Figure 7 (a) shows the ratio of dynamic to static 
stress intensity factor versus normalized crack speed 
when a crack is propagating with deceleration under 
the Rayleigh wave speed in an infinite plate subjected 
to normal displacements. The stress intensity factors 
are not almost affected by acceleration at high crack 
speed )65.0/( >scc . However, the stress intensity 
factors decrease rapidly when the crack propagates at 
low speed with high deceleration. Even if the crack 
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(a) Variation of deceleration 
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(b) Variation of time rate of change of DSIF 

Fig. 7. The ratio of dynamic to static stress intensity factor 
versus normalized crack speed when a crack is propagating at 
a constant velocity or decelerating in an infinite plate under 
plane stress conditions and under the assumption that the 
crack propagates with a constant y-displacement at a point on 
the crack surface away from the crack tip. 
 
propagates at low speed, when the crack deceleration 
is low, the dynamic stress intensity factors approach 
the static state. 

Figure 7 (b) shows the influence of stress intensity 
factor on the rate of change of mode I stress intensity 
factor d

IK  when the crack propagates with 
deceleration. In an experiment using a single edge 
cracked tensile plate reported by Arakawa et al.(2000), 

d
IK  has a negative value when a crack propagates 

with deceleration. Thus, a negative d
IK is applied 

during the crack deceleration. As shown in Fig. 7 (b), 
the dynamic stress intensity factors decrease with 
increasing the rate of change of stress intensity factor 
when a crack propagates with deceleration. 
 

4. Conclusion 

In this study, the stress and displacement fields for 
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an unsteadily propagating crack are developed 
through an analytic method. Specially, the partial 
differential equations for the higher order terms of 
two wave potentials Φ  and Ψ  in the dynamic 
equilibrium can be transformed into the Laplace’s 
equations whose solutions have harmonic functions. 
The method of this transform is first shown in this 
paper. 

The structure of the stress and displacement fields 
obtained in this study is general and universal. The 
higher order terms in the fields are not directly 
affected by the stress intensity factors and are not 
separated into two terms of stress intensity factors and 
non-stress intensity factors. Generally, experimental 
methods used in fracture investigations employ such 
descriptions of stress field to extract the stress 
intensity factor from full-filed experimental data 
sampled from a region between the near and far fields. 
In this intermediate region, a singular term and one or 
two higher order terms are sufficient to accurately 
describe a stress field. However, the analysis 
presented here indicates that at least three terms must 
be considered in the case of a transient crack in order 
to explicitly account for the transient effects. Using 
the transient stress fields developed in this study, the 
characteristics of the transient effects are shown. The 
results indicate that the isochromatic fringes of mode 
I tilt backward around the crack tip with increasing 
crack tip acceleration c  and tilt forward around the 
crack tip with increasing the rate of change of the 
dynamic mode I stress intensity factor d

IK . When a 
crack propagates with a constant y-displacement at a 
point on the crack surface away from the crack tip,  
the stress intensity factors for a propagating crack in 
an infinite plate decrease as a crack speed increases, 
and become zero when a crack velocity approaches 
Rayleigh wave speed. Specially, when the crack 
propagates with suddenly high acceleration or 
deceleration at low velocity, the stress intensity 
factors increase infinitely or approach zero. However, 
the stress intensity factors are not almost affected by 
acceleration or deceleration at high crack speed 

)65.0/( >scc . The dynamic stress intensity factors  

decrease with increasing the rate of change of stress 
intensity factor at a crack speed and increase with 
decreasing the rate of change.  
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