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Abstract

Stress and displacement fields for an unsteadily propagating crack under mode I and II loading are developed
through an asymptotic analysis. Dynamic equilibrium equations for the unsteady state are developed and the solution to
the displacement fields and the stress fields for a crack propagating with high crack tip acceleration, deceleration and
rapidly varying stress intensity factor. The influence of transients on the higher order terms of the stress fields are
explicitly revealed. Using these stress components, isochromatic fringes around the propagating crack are generated for
different crack speeds, crack tip accelerations and the time rate of change of stress intensity factor, and the effects of the
transients on these fringes are discussed. The effects of the transients on the dynamic stress intensity factor are
discussed when a crack propagates with high acceleration and deceleration. The effect of transient on the time rate of
change of dynamic stress intensity factor below Rayleigh wave speed in an infinite body is also studied.

Keywords: Unsteady crack propagation, Dynamic stress intensity factor, Stress and displacement fields, Isochromatic fringes,
Acceleration and deceleration crack, Time rate of change of dynamic stress intensity factor

at the starting and stopping crack.

1. Introduction The structure of dynamic stress and displacement
fields for a stationary crack tip was studied by Thau
and Lu (1971), Sih and Embley (1972), Chen (1978),
Itou (1980) using a Laplace-Fourier variable method
and their results indicate that the dynamic fields are
the same as static ones, except for the stress intensity
factor which is time dependent.

The structure of dynamic stress and displacement
fields for a propagating crack tip was studied by Yoffe
(1951), Craggs (1960), Nishioka et al. (1983) and Lee
et al. (1996) and their results indicate that the crack
tip stress fields retain the inverse square root
singularity and is dependent on the instantaneous
value of the stress intensity factor and the crack
propagation velocity.

“Corresponding author. Tel.: +82 54 530 5404; Fax.: +82 54 530 5407 However, Dally and Shukla’s experiment (1979)

E-mail address: khlee@sangju.ac kr shows that the crack tip fields are dependent on the

Dynamic fractures analysis can be classified into
stationary and propagating crack problems. In case of
dynamic stationary crack problem, the stress and
displacement fields are time dependent. Thus, the
stress intensity factors are vary with time. A dynamic
propagating crack problem can be divided into steady
and unsteady states. Generally, in the steady state,
stresses and displacements depend, not on time, but
crack propagation velocity. However, in the unsteady
dynamic state, they are variable with time. Thus,
dynamic stress intensity factor (DSIF) and crack
propagation velocity in the unsteady state changes
with time, and the transient phenomena occur mainly
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high crack tip acceleration and rapidly varying stress
intensity factor in addition to instant stress intensity
factor and crack propagation velocity. In all these
studies, the crack propagates at constant velocity in
steady state. Since the crack tip speed changes rapidly
during crack initiation, the crack growth is likely to be
transient, with the crack speed and dynamic stress
intensity factors changing as a function of time. Using
the two wave displacement potentials, Freund (1990)
provided the partial differential equations and the
solutions for two wave potentials in the dynamic
equilibrium and a higher order asymptotic expansion
for the first stress invariant and Guo et al. (2003)
analyzed for sudden jumps in the crack tip velocity by
numerical and experiment. Ing and wang (2004)
investigated for transient response of a mode III crack
propagating in a piezoelectric medium. In spite of
these studies, the understanding of the individual
stresses and displacements for a propagating transient
crack is still limited. Rosakis, Liu and Freund (1991)
obtained the higher order asymptotic individual stress
components near the tip of a non-uniformly propa-
gating mode I crack. However, their solutions can’t
have harmonic function because of being obtained
from not transformed Laplace’s equation but general
differential equation in the dynamic equilibrium.
When we generate the contours for constant maxi-
mum shear stress (isochromatics) for mode I using
their individual stress fields under high crack tip
acceleration and rapidly varying stress intensity factor,
the isochromatics can’t be symmetric about the x-axis
on the basis of crack tip.

To overcome this problem, the stress and displace-
ment fields for a transiently propagating crack are
developed through a new method in this paper. The
transient equilibrium equation is formulated in terms
of displacement potentials and the solution is obtained
through an asymptotic analysis. In analyzing this
problem, it is very important that one transforms the
general partial differential equation in the dynamic
equilibrium into the Laplace’s equation whose solu-
tion has harmonic function. The method of this trans-
form is first proposed in this paper. From the
solutions of the Laplace’s equations, the stress and
displacement fields for a transient crack are obtained.
Using the stress fields developed in this study, the
contours for the isochromatics are generated and the
effects of a transient crack on these contours are
discussed.

2. Stress and displacement fields for an
unsteadily propagating crack

2.1. Formation for equilibrium equations

The relationship between stress and strain can be
written as

Oy =C 1 Ex +CEyy
_ 1
Oy =C€x +C 6y (1)

Tyy = CesVxy

where X and Y are ‘the reference coordinates,
o, the inplane stress components, C,=4+2u

and C,=A1, and A and g denoting Lame’s
constant and the shear modulus at X =0 respectively.
If the deformation is plane strain, the displacements
u and vy which are derived from dilatational and
shear wave potentials @ and ¥ can be expressed

by Eq. 2)

90 ¥

u=2",.9%, _a@ 8‘1‘ (2)
oX dY

y=
Y dX

The equilibrium in the transient dynamic state is
given by Eq. (3)

00, 0Ty _ du
x ar Poar
0T,y N do,, _ dv 3)

ox  or o

Substituting Eq. (2) into Eq. (1), and substituting
Eq. (1) into Eq. (3), the equations for the dynamic
state can be obtained as

EXONEEPR R Y
Cil==t+t=>5 +C, PR +
X dX oY aXoY X9y

q([ PO Y PV ﬂ ER (atb a\P) (4-a)

_ 0P ¥
axayﬁay3 aX?9Y X oY

o

o Y 0’0 W
sz Su3 2 +C2I 2 + 2 +
)G ) 0X?9Y  0XoY

I’d P VY 2 (9D oY
'C“ 2 3 - 3 + 3 =p—|—=—-=
0X°0Y dX® 0dXoY a*\lay ox

(4-b)

The moving crack tip coordinates are
x=X-a(t), y=Y . When ® and ¥ have
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function of position (x, y), crack tip speed c(z)and
time t at crack tip, the transformations for the
transiently moving crack tip are given as

82 :i’ az = az b
aXZ ax2 8Y2 - ayz
>, > .o 9 ®)
=5 = C 2 —Ci+72
ot o oxot ox ot

where ¢ =dc/d¢ and g(¢)is the half crack length
in center crack or the crack length of an edge crack. If
the crack propagates at a constant velocity in steady
state, 9> /0t”> =c*(9”/0x*). From the relations in
Eq. (5), Eq. (4) is transformed as

RGN )

e = B (2
o oyt u,(k+2) ox oxot  ot’
Za—lp L+&(éai+ oW I, (6-b)
ox* 9y’ u, ox ‘oo ar*

Where \/1()2,0{_\/1()2,6_\/2

¢, = 2-v) for plane strain , ¢, =c, for
1-2v

plane stress
¢,c, and ¢, are the crack propagation velocity,
elastic dilatational wave velocity and elastic shear
wave velocity at the crack tip. It is very difficult to
obtain analytical solutions for the elastodynamic
differential equation (6). Thus, an asymptotic
expansion analysis of stress and displacement fields
around the propagating crack is employed. To obtain
an asymptotic expansion of the fields around the
crack tip, we assume the general solutions of Eq. (6)

for @ and W as follows

O(z,,t) =—Re[ 4, (z,,1)dz, .
W(z,,0) = —Im[y, (z,,0dz, )

¢n (z,) and ¥/, (z,) can be written with a

power series as
B,(z,,t) = ZA@HW

w,(z,,0) = Z B,(t)z!"” ®)

where A (t)= A’ (¢)+id,(t) and B (r)=B°(1)
+iB (1) and z, =x+m, y.

Substituting Eq (8) into Eq. (7) and substituting Eq
(7) into Eq. (6-a), the structure for complex constant
A of Eq. (6-a) become as Eq.(9)

n

{ (o} +m)A,z ml}:o:nﬂ,z 9-2)

12
e{ (o +m})Az"* " =— 202 8( 24z )}
¢ ot
‘n=34 (9-b)
R n(O{2+m )4,z _zcmi(cl/zA Zn/271)
2 ¢ o
2 |1 97 .
]|
1
‘n=56 (9-¢)

When n =1, 2, m, =ia,2, and m, is dependent

on crack propagation velocity, physical properties
and time. However, when n >3, m, is dependent

on the crack propagation, physical properties and
acceleration, and the value is changed for each n.
The structure for the complex constants 4 and B,

can be written as

) 22 9 .
% (0!2+m1)A -1 _ = (1/2An21/21)+
¢ ot

2 |10 e
)
!

n 2" 9
I — (& +m*)B 2" =—— ¢’B, s
e

21109 /21
n— ZL or? (BHZS )}}

where n <0 then A, and B,=0.

Thus, when @ and W in Eq. (6) can be expanded
by powers as Eq. (8), the structure of Eq. (6) can be
expressed as Eq. (11)

(10-a)

(10-b)

a/zazq ’e, 2”79 (c‘” acbn_z]+ 1 0@,

¥ cal &) o
(11-a)
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, 07, MY "9 I P, ,) 10°%,,
20 2y 0 5 2 GACS R PR
ox dy c; El ox ¢ ot
(11-b)

where n <0, then b =¥ =0

2.2. Stress and displacement fields for n=1, 2

When =1, 2, Eq. (11)is given as

2 2
o J qzn L9 ‘12,1 —0 (12-a)
ox dy
,0W, 9, “o (12-b)

o’ 4=
T oox? ay’

Egs (12-a) and (12-b) are the Laplace’s equation in
complex domain Zy =X MY and the same as

that for steady state and can be rewritten as
(o +m)®,(z,,0)=0 and (o +m?)¥,(z,,t)=0 -
and m_ =iq, . Substituting the
and ¥ in Eq. (7) into Eq. (2),

n=1 and 2 can

Thus m, =ie,
differentiation of D,

the displacements # and v for
be expressed as Eq. (13).

u= _Re{¢n (Z[at) tay, (Zsat)}
y= Im{a1¢n(21,t)+l//"(zs,t)} (13)

Substituting the differentiation of Eq. (13) into Eq.
(1), the stress o; for n=1 and 2 can be expressed

as Eq. (14).

——uRel(1+207 —02 )8, (z,,0) + 207, (2,
o, = uRe{(1+a2)0, (2,0 + 20, (z,,0)}
r, = uimQeyg) 2,0+ 1+ a2, (2,0} (14)

Subsituting Eq. (7) into Eq. (14), applying traction
free boundary conditions to the crack surface, An

and B, can be obtained as

2 . 2 .
A ) =—=B,(0K (t)’ A,(t)=—=B,(0)K
n(t) ﬂm I(C) n(t) n(t) IL[\/% II(C) n(t)
2
Bo :—hOB Ko
4 (0) N 1 (OK (1),
x 2 x N
="} 15
B, () T By (0K, (1) (15)

where
X 2x « 1+«
he =h. = L s b =h?=
P e 20
1+a?
B(0)=——"——5
4o, —(1+ ;)
20
B,(c)= .

dao, —(1+0?)’

K and K for n=1 are the stress intensity
factors K¢ (¢) and K (¢)respectively.

Thus, the stresses for a propagating crack can be
obtained as Eq. (16).

n—=2

K°’B n—= _
550 AT cos(”—zzw,

2

n{(l +2a;]

-2
—2a.h'r, 2 cos( )0}

K'B 2 —
+””(c)n{(1+20(,2 —al)r? sin(nzz)ﬁ,

2z

n=2
—2ahr? s1n( )0 }

_K.B,()

Oy = m

n-2
+2a.hr cos( )HS}

n-2
n{— (+a)r 2 cos” ; 26,

sn's

4 K:BII(C)

2z

n=2
+ 2alshn T 2 Sln( )99}

n-2
n{— (i sin=20,

K°B )
T, == © n—2a,r, 2 s1n(L )6,
\N27 2

n-2 2 2
+(1+a)h'r,> s1n( )65}

”( ) {Za,r, 2 cos( 2)6’,
27z 2
—(+a’ )h,,rjz cos(> )0} (16)

The displacement for a propagating crack can be
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obtained as Eq. (17). k,=A4/4; =B, /B;,
= 2 |2¢,D-2a,D
u, =K”"B’(C)\F{r1; cosg)@ o lr> cosg)t?\} he #\/ﬁ{ D*
*ﬂ i N* 2 2a'sa'sD—(l+0¢f)D d 1+0[52 d
= iﬂ © \E{Vz; sin()8, —a sin(z)@} e /1\/5[{ D’ e K}

200,

- c=deldt, g =~ 4 -~
v, =—11 1(© \f{—a[rlz sing)@ +hr2 sin(lz)@} . ¢ i<
u z Kf, =dK,,, /dt
K B n L
+"”(C)\F{a,m cos(e, — k., cos(")es}
u V1 2 2 m (=id;) in Eq. (18) is dependent on crack
(17) ‘

propagation velocity (C), acceleration (C), rate of
¥ =/ +(¢; > 0, =tan™ (ay/x), j=1s change of the stress intensity factor (K ), physical
properties (¢,, ¢,) and angle (&) at the crack tip.
The limit of the accelerations can be obtained from
Eq. (18) under K, K¢, K, ¢, ¢, and ¢, . The unit
From Eq. (10), the s, and m_ can be obtained  of k, and k, is the length (m). The value of the last

as follows term which is related to @ in d/_( j=1s) is very

2.3. Stress and displacement fields for n=3

small, compared to the other terms. Figure 1 show
mj(g) / mj(c), in which m (c) is the term

excluding the last term related to @ in a, - As

m,=id,, m, =id, (18)

For mode I state ; . .
shown in Fig. 1, mj(g)/m,_(c) approaches one.

2 (e 10 24 P This indicates that the value of the last terms related
Q, = |o} +k, 32£+2 Al“ +=Lsin® ZZJ ’ to @ is very small compared to one of the other
€ \¢ 1 ! terms. Thus, we can assume that m, is independent
& = lo? +k 2c(c'+2 Blo +%cos2 QJ of Xand ), and it simplifies the problem. When
' o ;e B« 2 m, and m_ are the same as Eq. (18), Eg. (11) can
k,=A4 14 =B} /By, expressed as Eq. (19)
: 20,6, D—(1+07)D 1+a .
A]D — 2 |: 6(36{3 g s ) K]d + s K]d:| ,
w2m D D 2.0
. 2 | 2¢,D-2a,D 2e, .
B = { L =K+ LK } ’ ¢=1050m/s , ¢/c,=0.7 , do/dt=2x10°m/s’
D2 D s ’ s ’
U271 el

D=da,a, —(1+0a’)*, K'=1MPa-m", dK,/dt=10° MPa-m'"/s’
1™~s s

2
Q, 1+a3}

D=—4ct| —5+—F——;
alcl a.vcx c.v

—o—: m(6)/m (6=r)

For mode II state ; —o—: m_(8)/m_(6=0)

2cfe A 2o )

A 2 “*Y1= 1 = 27 0.0 L L L 1 1

o = a,+k23 T2+ cos ’ 180 -120 -60 0 60 120 180
c \¢ o 2

Variation rate of m(6) and m_(6)

4, Angle at crack tip, 6(deg)
a, = 0{3 +k, g% £+2BL + 20, sinzi Fig. 1. Variation in the rate of 7,(6) and m,(6) with
3c;\c B, o 2 angle at crack tip for f, > 0.1
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&12 82(1)3(2[91) + azcbs(élat)

:0’
ox® oy’
PR A CRU NN RO (19)
! ox? oy’

where fj = x+idj ¥ and &j is dependent on a

transient factors in addition to physical properties
and crack propagation velocity. Eq. (19) is also

the Laplace’s equation in complex domain z,
and can be rewritten as (& +m.)® (2,,t)=0
al+m2)¥,(z,,t) =
m, =id, . When n >3, Laplace’s equations for @

and ( 0. Thus m,=id, and
and P, can be also obtained and the solutions of the

Laplace’s equations have harmonic functions. Thus,
®,(2,,t) and ¥, (2,,¢r) canbe written as

D, (2,,1) = —Re [y (2,,0),

W2, 0 =—Im [y, (2,002, (20)

where 5 = n.o= 17
Z;=x+m; =x+id;y

Po=yx’+(@,y) s 6, =tan'[q,y/x]. j=Ls

The @,(2,,0) and w,(2,,1) are dependent on

acceleration(dc/dt) and the rate of change of the stress
intensity factor (dK/dt) in addition to the crack
propagation velocity and physical properties.
Substituting the differentiation of D,(,,0) and

WY, (2,,t) in Eq. (20) into Eq. (2), the displacements

u and v for n=3 can be expressed as Eq. (21).

u=—Relp,(2,,0)+aw, (2,0}

v=Im{&,0,(2,.0)+w,(Z,.01)} (1)

Substituting the differentiation of Eq. (21) into Eq.
(1), the stress o; for n=3 can be expressed as Eq.

2).

N

- #R{lz a—afwz}@@,,mm@ ,t>}
)l//s (Z\ s t)} (22)

}@(Z;J)ﬂa%(z\,t)}

L= uImRa,g (2,0 + 1+ 6

#,(z,,t) and w,(z,,t) can be written as

By (2,,1) =[A (1) +id; (1)]2)?

Wi (2,.0) =[B; (1) +iB; (1)) (23)

Substituting Eq. (23) into Eq. (22), the stress fields
become

3| 1= . s | 0
0-“3=_#2{A3L s(1-a7)+2¢, 2} ”2cos31

l

+2BJaF? cosi
2

31— A
+,uz{A3L_a2 (1—0;,2)+20¢f},”2 sm;’

i

+ ZB;O?S ﬂ”z sin 62‘}

- ~
0-yy3 =:u3{A30|: a A2)+2i|l”, OS%

2 1-¢,

+2Bja, f”z 0592‘}

3L 1-a2 . ., . B
—U=3A4, |- s a’)+2 sin —
#2{ 3|: 1—0{,2 ) :|r, 2

. )
+2B,a,7!"7 s nz}

T,

x73

. 0 )
—,u;{A;’QaI ) smé +B(1+éd )" s1n£}

6’ +B;(1+a>)7"* co 6}
2 2

24)

3 .
Z{A (20!,) 1/2

Applying traction free boundary conditions on the
crack surface, A47,B?,A; and B; can be obtained

as
2 .
A} (t)=————==B,(c,¢,)K; (1)
3 /'[(‘—\/E 1 3
. 2 A . .
A, ()= B, (c,c,t)K, (t)>

u~N2m
B2 (1) = —h? (¢, e, ) A2 (1)

B, (t) = —h, (c,é,t) 4, () (25

where
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(1+&)(1-a?)
40,6,(1-02) +(1+ D)2 )1—67)—2(1— 0:2)]
20,(1-07)
40,6,(1-0) +(1+ D) [(-)1—-67) - 21— 0:2)]

RS (c,é,t) =

B (e =

B,(c.ét)=

2¢,
(1+a?)

. 20-a2)-(1-aH)(1-a}
h3(c,é,t):( a,)A( %2)( a;)
2a,(1-«a;)

>

Substituting Eq. (25) into Eq. (24), applying
A? = A" /k, and A = A /k,, the stress fields
o, can be obtained as Eq. (26)

3K¢

1—o?
O =——=8,(0)
3 k27 1 {|:1_ 12

6, - )
cos——2h{é 7! cos—
2 2

0( N ~2 |A
11( )H: (1—a,2)+20{,2 }rll/z
3K¢

ég}
sin =
2
— B 2 ~1/2
0,3 = kr (){|: ) :|

6, . )
cos—+2hla 7! cos—-
2 2

)+2 "2:|’\1/2

3K

k,\2m

+

A

smz—Zh ar!?si
2

Table 1. Mechanical properties.

Shear Modulus, 4 4=1.316 (GPa)

Material Fringe Constant, f f = 15 (kKN/m-fringe)
Poisson’s ratio, v v =0.38

Density, p p =1200 (kg/m’)

ERIE Y 0s 10 an A
wh
(@ K=

nn

(b) K¢ =100MPa~/m/s’

409

31(”;

0{ A2 ~1/2
kr n( )H: 0{ (l—a,) 2:|

s1n£+2h arl’s nﬂ
2 2

3K{ -
Txy3 = k FB (C){ 20{1’71/2

(1+ &) sin(— )}

)
sm(—) +
(2)

3K¢ . )
4+ o B,, (c){Za,rZ”2 cos(?’) -

(+alHn ' cos(gzs)} (26)

Substituting Eq. (23) into Eq.(21), the displacement
fields can be obtained as

u, = KB K8, { 2 cos(3)9 —-a.hjr2 cos(3)6’}
ku \rw

d 3 R
+Ki B”(C) ‘;sm( )6, — & b7 2sin(;)t9s}

A A

o2 s1n(3)6 + 172 s1n(;)0 }

3
K”B"("’)\f 72 cos( )6, —h rzcos(;)ﬁ}

3=

A
K"B (c) {
@

27
Finally, the fields for a transient crack , o, and
u; are given in Eq. (28)
3 3 28
O-uzzo.ijn’ ”,_Z”m ( )

na mn -0 -05 on ns 1.0

(©) K¢ =300MPa/m/s>

Fig. 2. Isochromatic fringe patterns obtained for a stationary crack tip (M=0.02) under ¢=0, K ;” =1 OMPar and f =1
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The stress fields in Eq. (28) satisfy the traction free
condition on the crack surface (@ = +7 ). When the
¢ and K are zero, the equations reduce to the
fields for a steady state. It can be seen from the stress
and displacement fields (equations 28) that the terms
of n=1 and 2 are the same as those in the steady
state and higher orders terms of n >3 have terms of
corresponding to the crack tip accelerations and the
rate of change of stress intensity factor. Unlike the
results reported by Freund (1990) and Rosakis et al.
(1991), the higher order terms in this fields are not
affected directly by the stress intensity factors and are
not separated into two terms for stress intensity
factors and non-stress intensity factors. This structure
of these fields is general and universal.

Generally, in order to obtain fracture parameters for
a steady state crack from experimental data obtained
through optical techniques such as photoelasticity or
coherent gradient sensing (CGS) the use of the first
few terms of the stress fields is sufficient. However,
in the case of an unsteady crack, it is necessary to use
at least three terms for the fields to explicitly account
for the transient effects when extracting fracture
parameters from experimental data.

3. Discussion on solutions

3.1 Contours of constant maximum shear stress

In order to investigate the effects of the transient
terms on a dynamic fracture, contours of constant
maximum shear stress (isochromatics) are generated
for the opening mode using the terms n =1 and 3
in Eq. (28). The material thickness (/4 ) used in
generating the contours is 9.5 mm and the value of
the material properties are shown in table 1.

(@ ¢=0

(b) ¢=4x10"m/s?

Isochromatics at each point around crack tip are
generated by the stress optic law (Eq. 29) combined
with stress fields.

Jeo.

where N is the fringe order, A the plate
thickness and £ the material fringe constant

2 2 _
-0,) +4r,, =

Mo (29)
h

In experiments (Ravi-Chandar, 1993), the rate of
increase in the dynamic stress intensity factor, [{'1" s
ranges from 1.0MPa+/m /s for quasi-static loading,
resulting in a dynamic fracture to about the order of
10°~10*MPa «/m /s at crack initiation. Arakawa et al.
(2000) showed that the rate of change of velocity at
the initiation of a single edge crack could be of the
order of 5X10° m/s’. Thus, the values of K f and
¢ are varied in this range for generating the contours
and the remote stress in the x direction o, Wwas set

to zero.
Figure 2 shows the effect of the rate of change of
mode I stress intensity factor K @ for a stationary

crack tip (M=0.02) in under ¢=0 and fk =1,
where M is C/Cs. When Kf =0, the fringes are
upright. As K¢ increases, the fringes tilt forward

around the crack tip, and the size and number of
fringes increases. This variation occurs largely when
the rate of change of the stress intensity factor is high.

Figure 3 shows the effect of crack tip acceleration
¢ for a crack tip propagating with M=0.5 under
K j’ =0 and k, =05. When a crack velocity is low,

a high rate of change of velocity in Eq. (18) can’t be
applied. However, a selecting the small value of

1.0

-05

o 05 05 10

0.0
xh
(c) ¢=8x10"m/s*

Fig. 3. Isochromatic fringe patterns obtained for a crack tip propagating with M=0.5 under g f =0, K [d = l.OMPa\/E and

k, =0.5-
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k(= A’/ A7), ahigher ¢ canbe applied in Eq. (18).
It can be seen in Fig. 3 that the fringes tilt backward
around the crack tip and their sizes increase with
increasing crack tip acceleration. This variation also
occurs largely at a high rate of change of velocity.
Generally, isochromatic fringes for fast propagating
cracks tilt more towards the crack face (backward)
compared to those for a stationary crack. The
phenomenon also occurs for a high crack tip
acceleration C .

Figure 4 shows the effect of crack tip acceler-
ation ¢ for a crack tip propagating with M=0.5
under, K¢ =10°MPa+/m/s’> and k, =0.5. Under
K= 10°MPa~/m/s2, it can be also observed that

the fringes also tilt backward around the crack tip and
their sizes increase as the crack tip acceleration
increases. Compared with Fig. 3 and 4, as K d

increases as in Fig. 2, the fringes around the crack-tip
tilt forward.

The above results indicate that the isochromatic
fringes of mode I using the stress fields obtained in
this study are symmetric about x axis under very
rapid transient state and tilt backward around the
crack tip with increasing crack tip acceleration ¢
and tilt forward around the crack tip with increasing
the rate of change of the dynamic mode I stress
intensity factor K.

3.2 Comparison with fields obtained by Rosakis et al.
(1991)

Figure 5 shows the contours for constant maxi-
mum shear stress generated from fields obtained by

(@ ¢=0

(b) ¢=5x10"m/s’

Rosakis et al. (1991). Where, O,.and O, among the
three stress components can be written as follows.
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Fig. 4. Isochromatic fringe patterns obtained for a crack tip propagating with M=0.5 under g 1" =10°MPa~/m/s? »

K¢ =1.0MPavm and k =0.5.
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As known in Fig. 5, the contours are not symmetric
about the X axis except for the crack tip because

(@ (®)

Fig. 5. The Isochromatic fringe patterns generated from fields
obtained by Rosakis et al. (1991) ; (a) is the same condition
as Fig. 2(b); (b) is the same condition as Fig. 3(c).

their solutions can not have harmonic function.
Actually, the fields very close to the crack tip don’t
explain effectively the transient effects. Thus, the
stress components are not effective for analyzing a
transient crack by photoelasticity. Even if the fields
have some problems with respect to photoelasticity,
the contours of the isopachic fringes on the constant
first stress invariant (o + o‘yy) are the same as those

in this study.

3.3 Dynamic stress intensity factor during a crack
acceleration and deceleration

Figure 6(a) shows the ratio of dynamic to static
stress intensity factor versus normalized crack speed
when a crack propagates with constant velocity or
acc-eleration under the Rayleigh wave speed of
c, =0.9235¢, in an infinite plate subjected to normal

displacements on crack faces. The dynamic stress
intensity factors can be obtained from assuming that
the crack propagates with a constant y-displacement
at a point on the crack surface away from the crack tip
regardless of the crack speed, acceleration and
deceleration. This crack propagation is quite possible
in an infinite plate subjected to crack face pressure.
Where K; is a static stress intensity factor im-

mediately prior to the crack propagation. To obtain
the stress intensity factor in y-displacement com-
ponent of Eq. (28), the following conditions
were applied §=7, r=0.01 m and k, =0.5. As

known in Fig. 6 (a), the stress intensity factors
decrease with increasing a crack speed, and they
become zero when the crack velocity approaches the
Rayleigh wave speed. Specially, the stress intensity
factors increase rapidly when the crack propagates
with high acceleration at a low velocity. However, the
stress intensity factors are not almost affected by high
acceleration at a high crack speed. When the crack
propagates with a constant velocity, the normalized
stress intensity factors are almost the same as those of
the two self-similar central crack tips extending at
same speed by crack face pressure (Freund, 1990). In
an experiment using a single edge cracked tensile
plate reported by Arakawa et al. (2000), the dynamic
stress intensity factors increase as a crack propagates
with acceleration, and decrease as a crack propagates
with deceleration.

Figure 6 (b) shows the influence of the stress
intensity factor on the rate of change of the mode I
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Fig. 6. The ratio of dynamic to static stress intensity factor
versus normalized crack speed when a crack is propagating at
a constant velocity or accelerating in an infinite plate under
plane stress conditions and under the assumption that the
crack propagates with a constant y-displacement at a point on
the crack surface away from the crack tip.

stress intensity factor K¢ when the crack propagates
with acceleration. Unlike X ;’ =0, the normalized

stress intensity factors can be determined, provided
that a critical displacement V value to propagate
crack is known. It is assumed that the critical
displacement (@ = 7,7 =0.01 m)is 0.03 mm. The

dynamic stress intensity factors change slightly when
the displace-ment changes. As shown in Fig. 6 (b), the
dynamic stress intensity factors decrease with
increasing rate of change of stress intensity factor at a
crack speed.

Figure 7 (a) shows the ratio of dynamic to static
stress intensity factor versus normalized crack speed
when a crack is propagating with deceleration under
the Rayleigh wave speed in an infinite plate subjected
to normal displacements. The stress intensity factors
are not almost affected by acceleration at high crack
speed (c/c; >0.65). However, the stress intensity
factors decrease rapidly when the crack propagates at
low speed with high deceleration. Even if the crack
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Fig. 7. The ratio of dynamic to static stress intensity factor
versus normalized crack speed when a crack is propagating at
a constant velocity or decelerating in an infinite plate under
plane stress conditions and under the assumption that the
crack propagates with a constant y-displacement at a point on
the crack surface away from the crack tip.

propagates at low speed, when the crack deceleration
is low, the dynamic stress intensity factors approach
the static state.

Figure 7 (b) shows the influence of stress intensity
factor on the rate of change of mode I stress intensity
factor K¢ when the crack propagates with

deceleration. In an experiment using a single edge
cracked tensile plate reported by Arakawa et al.(2000),
K/ has a negative value when a crack propagates
with deceleration. Thus, a negative K¢ is applied

during the crack deceleration. As shown in Fig. 7 (b),
the dynamic stress intensity factors decrease with
increasing the rate of change of stress intensity factor
when a crack propagates with deceleration.

4. Conclusion

In this study, the stress and displacement fields for
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an unsteadily propagating crack are developed
through an analytic method. Specially, the partial
differential equations for the higher order terms of
two wave potentials @ and ¥ in the dynamic
equilibrium can be transformed into the Laplace’s
equations whose solutions have harmonic functions.
The method of this transform is first shown in this
paper.

The structure of the stress and displacement fields
obtained in this study is general and universal. The
higher order terms in the fields are not directly
affected by the stress intensity factors and are not
separated into two terms of stress intensity factors and
non-stress intensity factors. Generally, experimental
methods used in fracture investigations employ such
descriptions of stress field to extract the stress
intensity factor from full-filed experimental data

sampled from a region between the near and far fields.

In this intermediate region, a singular term and one or
two higher order terms are sufficient to accurately
describe a stress field. However, the analysis
presented here indicates that at least three terms must
be considered in the case of a transient crack in order
to explicitly account for the transient effects. Using
the transient stress fields developed in this study, the
characteristics of the transient effects are shown. The
results indicate that the isochromatic fringes of mode
I tilt backward around the crack tip with increasing
crack tip acceleration ¢ and tilt forward around the
crack tip with increasing the rate of change of the
dynamic mode I stress intensity factor K{. When a
crack propagates with a constant y-displacement at a
point on the crack surface away from the crack tip,
the stress intensity factors for a propagating crack in
an infinite plate decrease as a crack speed increases,
and become zero when a crack velocity approaches
Rayleigh wave speed. Specially, when the crack
propagates with suddenly high acceleration or
deceleration at low velocity, the stress intensity
factors increase infinitely or approach zero. However,
the stress intensity factors are not almost affected by
acceleration or deceleration at high crack speed
(c/c, >0.65)- The dynamic stress intensity factors

decrease with increasing the rate of change of stress
intensity factor at a crack speed and increase with
decreasing the rate of change.
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